Complex Gaussian Processes for Regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex-Valued Gaussian Processes for Regression

In this paper we propose a novel Bayesian kernel based solution for regression in complex fields. We develop the formulation of the Gaussian process for regression (GPR) to deal with complex-valued outputs. Previous solutions for kernels methods usually assume a complexification approach, where the real-valued kernel is replaced by a complexvalued one. However, based on the results in complex-v...

متن کامل

Proper Complex Gaussian Processes for Regression

Complex-valued signals are used in the modeling of many systems in engineering and science, hence being of fundamental interest. Often, random complex-valued signals are considered to be proper. A proper complex random variable or process is uncorrelated with its complex conjugate. This assumption is a good model of the underlying physics in many problems, and simplifies the computations. While...

متن کامل

Gaussian Processes for Regression

The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions . In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and aver...

متن کامل

Gaussian Processes for Ordinal Regression

We present a probabilistic kernel approach to ordinal regression based on Gaussian processes. A threshold model that generalizes the probit function is used as the likelihood function for ordinal variables. Two inference techniques, based on the Laplace approximation and the expectation propagation algorithm respectively, are derived for hyperparameter learning and model selection. We compare t...

متن کامل

Regression with Gaussian Processes :

Recently, new models for regression and classiication have been introduced which may be interpreted as neural networks in the limit of innnitely many parameters. For a regression model, the average case generalization performance is studied using a combination of information theoretic ideas and statistical mechanics methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2018

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2018.2805019